Prenatal cannabis exposure and cognitive function:

CIARA A. TORRES^{1,4}, CARL L. HART^{2,3,4}

a critical review

¹School of Social Work, ²Division on Substance Abuse, N.Y. State Psychiatric Institute, ³Departments of Psychology and Psychiatry, ⁴Columbia University, New York, N.Y. 10032

ABSTRACT

demonstrating effects of catastrophic prenatal cannabis exposure, popular opinion and public policies still reflect the belief that cannabis is a uniquely dangerous teratogen. This article provides a critical review of results from longitudinal studies examining the impact of prenatal cannabis exposure on multiple domains of cognitive functioning. In addition, neuroimaging data on cannabisexposed offspring are reviewed in order to better understand possible mechanisms of action. Statistically significant differences between prenatally exposed individuals and control participants have been observed on a minority of measures (8.2 percent). More importantly, however, the clinical significance of these findings is limited because cognitive functioning overwhelmingly falls within the normal range when compared against normative data. In short, there is no convincing evidence that prenatal cannabis exposure is associated with unique deleterious effects on cognitive functioning.

STATES THAT SOUGHT TO PROSECUTE WOMEN FOR DRUG USE DURING PREGNANCY

Propublica, 2015

•Tennessee amended its fetal assault law to include newborns that are "born *addicted* to or *harmed* by the narcotic drug" (TN SB1391, 2014). The law does not describe what constitutes an addicted newborn nor what should be considered to determine whether the baby has been harmed.

THE ASSUMPTION OF HARM

•Cannabis is the most frequently used illicit substance by women of reproductive age in the U.S. (NPHS, 1996; Van Gelder et al., 2010).

•The dominant popular view is that prenatal cannabis exposure causes a broad range of deleterious outcomes, especially on cognitive functioning (for a review, see Huizink and Mulder 2006; Jutras-Aswad et al. 2009).

WHAT WE DID: A CRITICAL REVIEW

Included studies on prenatal cannabis exposure and cognition

 Defined as processes of knowing, including attending, perceiving, imagining, remembering, reasoning and problem solving (APA, 2015)

Identify cohorts

-Ottawa Prospective Prenatal Study (Fried at Ottawa, Canada) -Mental Health Practices & Child Development Project (Day at Pittsburg,

-Prenatal Cocaine Exposure Studies (Singer at Cleveland, OH & Frank at Boston, MA)

-Jamaican Study (Dreher at Saint Thomas, Jamaica)

WHAT WAS OUR GOAL?

•To examine the assumption that prenatal cannabis exposure is harmful to cognitive functioning.

summarize

- # of studies
- # of groups from where
- methods

evaluate

- findings
- limitations
- interpretation
- clinical relevance

DETERMINING CLINICAL RELEVANCE

•Of every day, real-world, practical or functional import.

•Clinical relevance can be determined by comparing individual scores or measurements with normative data obtained from a large, randomly selected representative sample of the wider population. It should also incorporate important variables such as age, education, and gender.

•Normative data establish a baseline distribution for a score or measurement, and against which the score or measurement in experimental studies can be compared.

•Such comparisons allow researchers to determine whether statistically significant findings are clinically of functionally meaningful.

WHAT WE FOUND: THE PRIMARY DATA

infants & toddlers (up to 24mo) Richardson et al., 1995

• Noland et al., 2003 • Singer et al., 2005

(3-9y)Fried & Watkinson, 1990 Hayes et al., 1991 O'Connell & Fried, 1991 • Fried et al., 1992 Day et al., 1994 Leech et al., 1999 Noland et al., 2003 Frank et al., 2005 Noland et al., 2005

young children

older children (9-12y) Fried et al., 1997 Fried et al., 1998 • Fried & Watkinson, 2000 Richardson et al., 2002 Goldschmidt et al., 2004 Rose-Jacobs et al., 2011 • Rose-Jacobs et al., 2012

young adults (13-22y) • Fried & Watkinson, 2001 • Fried et al., 2003 • Smith et al., 2004 Day et al., 2006 • Smith et al., 2006 • Goldschmidt et al., 2012

MJ-exposed group

adolescents &

ANALYSIS: AN EXAMPLE OF NON-REPRESENTATIVE FINDINGS

• Beeghly et al., 2006

Goldschmidt et al., 2008

Investigators	Domain Tested	Participants	Time of Exposure	Findings	Caveats
Goldschmidt et al.,	General intelligence	Six year old	MJ use self-reported	1st and 2nd trimester:	Participants performed in the
2008	[SBIS-IV, (Composite	children of	at 4th & 7th pregnancy	Heavy prenatal MJ	normal range on the majority
	score composed of verbal	women who	months and at 24-28h	exposure group performed	of the cognitive tests. There
	reasoning, quantitative	reported MJ use	post-delivery	more poorly on measures	were three exceptions: 1) 2nd
Funding Source:	reasoning, abstract/visual	during: 1st		of short-term memory,	trimester exposure -
NIDA and NIAAA	reasoning and short-term	trimester (heavy	Categories:	verbal and quantitative	composite score (1 point
NIDA and NIAAA		MJ: N=93;	Light-moderate =	reasoning, and the	below the norm); 2)
	memory subtests)]	light-moderate	0 <adj<1< td=""><td>composite score</td><td>quantitative reasoning score</td></adj<1<>	composite score	quantitative reasoning score
		MJ: N=175;	Heavy = ADJ≥1		(2 points below); and 3) 3rd
		CTL: N=380),			trimester exposure -
	Total no. of outcome	2nd trimester		3rd trimester: Heavy	quantitative reasoning score
	measures = 15	(heavy MJ:		prenatal MJ exposure	(1 point below)
	measures 15	N=30; light-		group performed more	
		moderate MJ:		poorly on measure of	
		N=103; CTL		quantitative reasoning and	Only one cognitive measure
		N=455); 3rd		the composite score	used to assess a specific
		trimester (heavy		the composite score	domain
		MJ: N=32;			domain
		light-moderate			
		MJ: N=88; CTL			
		N=528)			Mothers who used MJ during
					pregnancy were more likely
					to be poor, single, and
					provide a poorer home
					environment, as measured by
					the HSQ. They were also
					more likely to report using
					alcohol, tobacco, and cocaine
					Relatively small number of
	I	I	I	1	residencely similar number of

THE QUESTION: WHAT IS REPRESENTATIVE?

RESULTS SUMMARY

Any association between prenatal cannabis exposure and cognitive scores? Only a minority (10%) do.

Is clinical relevance determined? No individual scores reported.

Move on with group mean scores...

- 1. Only one study compares scores with normative data (Richardson et al., 1995).
- 2. Compare rest if possible (never normed, out of circulation or inaccessible)

TOTAL FOR ENTIRE LITERATURE < 1%

OTHER IMPORTANT FINDINGS

Overinterpretations in some (9/28) studies

-language (such as deficit and impairment) when referring to findings -even though none compared against normative data

Positive relationships minimized

-example (Leech et al., 1999): "Although finding fewer errors of omission may, at first, appear to be a positive effect of prenatal exposure... children may do less well over the long-term, particularly in time limited situations."

•All funded by same institution (NIDA)

TAKE-HOME MESSAGE

•There is no convincing evidence that prenatal cannabis exposure produces clinically relevant effects in term of cognition

Might change in future

-cognitive scores are compared against normative data -address impact of disproportionate contribution of research groups & funders

ACKNOWLEDGEMENTS

Support contributed by NIDA's T32 in HIV and Substance Abuse in the Criminal Justice System (Dr. Nabila El-Bassel, primary investigator). We thank Drs. Jennifer Manly and Anthony Ahmed for providing access to normative data for cognitive tests.

We certify that there is no conflict of interests with any financial organization regarding the material discussed in this study.

REFERENCES

TN SB1391, 2013–2014, 108th General Assembly. (2014). LegiScan. Retrieved September 08, 2015, from http://legiscan.com/TN/bill/SB1391/2013

National Pregnancy and Health Survey: Drug Use Among Women Delivering Live Births, 1992 (ICPSR 2835):http://www.icpsr.umich.edu/icpsrweb/NACJD/studies/2835 Accessed on September 9, 2015.

Van Gelder, M. M., Reefhuis, J., Caton, A. R., Werler, M. M., Druschel, C. M., Roeleveld, N., & National Birth Defects Prevention, S. (2010). Characteristics of pregnant illicit drug users and associations between cannabis use and perinatal outcome in a population-based study. Drug Alcohol Depend, 109(1-3), 243-247.

Huizink, A. C., & Mulder, E. J. (2006). Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci

Biobehav Rev, 30(1), 24-41. Jutras-Aswad, D., DiNieri, J. A., Harkany, T., & Hurd, Y. L. (2009). Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur Arch Psychiatry Clin Neurosci, 259(7), 395-412.

Richardson, G. A., Day, N. L., & Goldschmidt, L. (1995). Prenatal alcohol, marijuana, and tobacco use: infant mental and motor development. Neurotoxicol Teratol, 17(4), 479-487. Leech, S. L., Richardson, G. A., Goldschmidt, L., & Day, N. L. (1999). Prenatal substance exposure: effects on attention and impulsivity of 6-year-olds. Neurotoxicol Teratol, 21(2), 109-